
ISA2

Introduction to the ISA2
Test Bed

Interoperability
and conformance testing

Europe Direct is a service to help you find answers
to your questions about the European Union.

Freephone number (*):

00 800 6 7 8 9 10 11
(*) The information given is free, as are most calls

(though some operators, phone boxes or hotels may charge you).

Cover picture: © Fotolia/lisaalisa_ill

More information on the European Union is available on the Internet (http://europa.eu).

Luxembourg: Publications Office of the European Union, 2017

ISBN 978-92-79-63502-1 (print)
ISBN 978-92-79-63501-4 (web)
doi:10.2799/726677 (print)
doi:10.2799/838544 (web)

© European Union, 2017

Reuse is authorised, provided the source is acknowledged.

Printed in Belgium

Printed on elemental chlorine-free bleached paper (ECF)

http://europa.eu

Introduction to the ISA2 test bed  1

DISCLAIMERS
The views expressed in this document are purely those of the authors and may not, in any circumstances,
be interpreted as stating an official position of the European Commission.

The European Commission does not guarantee the accuracy of the information included in this handbook, nor does
it accept any responsibility for any use thereof.

Reference herein to any specific products, specifications, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favouring by the
European Commission.

All care has been taken by the author to ensure that s/he has obtained, where necessary, permission to use any
parts of manuscripts including illustrations, maps, and graphs, on which intellectual property rights already exist
from the titular holder(s) of such rights or from her/his or their legal representative.

This document has been carefully compiled by Trasys International, but no representation is made or warranty given
(either express or implied) as to the completeness or accuracy of the information it contains. Trasys International
is not liable for the information in this presentation or any decision or consequence based on the use of it. Trasys
International will not be liable for any damages arising from the use of the information contained in this handbook.
The information contained in this handbook is of a general nature and is solely for guidance on matters of general
interest. This handbook is not a substitute for professional advice on any particular matter. No reader should act
on the basis of any matter contained in this publication without considering appropriate professional advice.

This handbook has been drafted under the interoperability test-bed action, which is supported by the European
Commission’s ISA² programme. ISA² is a EUR 131 million programme supporting the modernisation of public
administrations in Europe through the development of eGovernment solutions. More than 20 solutions are already
available, with more to come soon. All solutions are open source and available free of charge to any interested
pubic administration in Europe.

https://ec.europa.eu/isa2/actions/platform-test-it-systems-services-and-products_en
https://ec.europa.eu/isa2/
https://ec.europa.eu/isa2/solutions_en

2

1

3

CONTENTS

INTRODUCTION	 4
1.1	 What is the purpose of this document?	 4
1.2	 Who is this document meant for?	 4

WHY AN INTEROPERABILITY TEST BED?	 5
2.1	 The business need	 5
2.2	 The ISA² test bed service	 5
2.3	 How do I use the test bed?	 7
2.4	 Who is using it?	 7
2.5	 The GITB test bed software	 8
2.6	 Where to find the test bed and extra information?	 8

INSTALLING THE GITB TEST BED	 9
3.1	 Step 1 – Install Docker	 10
3.2	 Step 2 – Install GITB test bed	 10
3.3	 Useful commands to manage your GITB test bed installation	 11

4

5

6

GITB TEST BED DEMONSTRATION	 13
4.1	 Demonstration test cases	 13
4.2	 Installing the test cases	 15
4.3	 Running the test cases	 19

GLOSSARY	 24

ANNEXES	 26
Annex I. Risk statement	 26
Annex II. Troubleshooting common GITB test bed issues	 27

Introduction to the ISA2 test bed  4

Introduction1
1.1	 What is the purpose of this document?

The purpose of this document is to introduce
the reader to ISA²’s interoperability test bed
service and the software that powers it. Test
centre providers can also follow the instructions
provided in this document to setup a local a
test bed instance, for production or evaluation
purposes, and get hands-on experience with it
through provided demo scenarios.

In short you would want to read this
document to:

•	 Find out what an interoperability test
bed is, why you need it, and what ISA²’s
interoperability test bed service is.

•	 Install the test bed software in your
local environment.

•	 Better understand what a test bed can do
through demo scenarios.

1.2	 Who is this document meant for?

This document is meant primarily for two types
of readers:

•	 Organisation decision makers
that are faced with the need to provide
interoperability testing services to their user
community, which may consider a test bed
as a means to achieve this.

•	 Technical staff that is tasked with
installing a local test bed instance for
evaluation purposes or for production use.

The document is split into two high level
parts, a business-level introduction followed
by a more technical installation guide. If you

are an organisation decision maker and find
that the first part applies to your needs the
next Step would be to hand the remaining,
more technical part to your staff for further
evaluation. Having said this however, even
for the technical sections, the reader is not
required to have advanced technical expertise
to follow the listed installation steps. What is
expected is familiarity with issuing commands
on a command console along with a basic
understanding of terms such as “host” and
“port”.

Introduction to the ISA2 test bed  5

The purpose of this section is to explain what
an interoperability test bed is and the needs
that it fulfils. It also aims in acquainting you
with ISA²’s central and reusable interoperability

1	� European Interoperability Framework: http://ec.europa.eu/isa/documents/eif_brochure_2011.pdf

test bed service and the GITB test bed software
that realises it but that can also be locally
installed in your organisation.

2.1	 The business need

European and national public administrations
have developed a multitude of IT systems
which are faced with the increasingly common
requirement of working together. The goal is to
enable cross-border administrative cooperation
that ultimately results in empowering
citizens and businesses with services that
are not restricted to geographic boundaries.
This cooperation represents however a
challenging task, considering the range of
different technologies used to implement such
systems but also, at higher levels, the diverse
organisational structures they support and the
varying semantics that may be applied to the
exchanged information.

The European Interoperability Framework (EIF 1)
defines four levels of interoperability – legal,

organisational, semantic and technical – that
should be taken into account when designing
interoperable IT solutions to deliver digital
public services. Establishing interoperability is
a process that requires alignment on all these
levels and one that poses a significant challenge
on testing to ensure the required alignment.

This testing challenge is in fact twofold, on the
one hand on the system under development
that needs to run interoperability tests as early
as possible in its elaboration phase, and on the
other hand on service providers or peer systems
that need a means to expose IT services for
testing without impacting their production
system operations.

2.2	 The ISA² test bed service

The ISA² interoperability test bed provides
generic testing facilities to initiatives that
create interoperability solutions in a cross-
border context or linked to European Legislation.
It offers:

•	 A test bed service that can run conformance
and interoperability tests.

•	 The possibility to host reference
implementations of specifications and
services for clients to test against.

•	 A test registry and repository to store test
artefacts (assertions, test cases, validation
schemas etc.) and federate test services
(validation services, simulator services etc.).

Why an Interoperability
Test Bed?2

http://ec.europa.eu/isa/documents/eif_brochure_2011.pdf

6  Why an Interoperability Test Bed?

Figure 1: The ISA2 interoperability test bed service

Simulator

Standard
validation

service API

Test bed

Validation
service

Standard
messaging
service API

Standard test
bed service API

ISA test bed

Interoperability test bed
service

Joinup Test Registry and Repository

Test asset Test suite Test case

Repository of hosted and
federated test resources

Interoperability
testing

community

The ISA² interoperability test bed is a central,
reusable service that can be used both for
interoperability and conformance testing,
ranging from the verification of complex
message exchanges as complete conversations,
to validation of content, received through a
variety of communication channels. Tests are
visualised through an intuitive user interface
that allows a tester to follow exchanged
messages between SUTs, simulators and
reference implementations, inspect and export
their content, and analyse the reports of failed
validations. Test progress and reports are also
exposed through standardised, machine-
readable formats.

2	� CEN GITB WA: http://www.cen.eu/work/areas/ict/ebusiness/pages/ws-gitb.aspx

The world of test beds, test services, validators
and simulators is a fragmented one, with
different organisations exposing distinct
services per domain, often overlapping in
terms of features and purpose. The ISA²
interoperability test bed is designed to address
this by accepting this fragmentation as a fact
and seeking to enable as much as possible the
reuse of existing services. This is achieved by
means of standardised service APIs used to
control the execution of a remote test, validate
content, simulate responses, or support diverse
communication means. This standardisation
support is provided through the concept of
service compliance established by the CEN
GITB Workshop Agreement 2, which also is the
source of the ISA² test bed software.

x What should it not be used for?

Given that the test bed’s focus is interoperability and conformance testing there are some cases that it
is less suited for:

•	 Functional or regression testing: The test bed’s focus does not lay on finding internal bugs.

•	 Performance testing: A test bed should not be used to stress test client systems.

•	 Penetration testing: To enhance connectivity and ease of use, security is relaxed and exchanged data
is exposed.

http://www.cen.eu/work/areas/ict/ebusiness/pages/ws-gitb.aspx

Introduction to the ISA2 test bed  7

2.3	 How do I use the test bed?

3	� CEF building blocks on Joinup: https://joinup.ec.europa.eu/community/cef
4	� AS2: https://www.ietf.org/rfc/rfc4130.txt
5	� AS4 profile of ebMS 3.0: http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/os/AS4-profile-

v1.0-os.pdf

Using the testbed can be summarised in
three steps:

1.	 A user logs onto the test bed platform
and selects one from a set of reusable
test cases.

2.	 The test case executes, testing the user’s
system against simulators and validators.
Tests can range from the verification

of complex message exchanges as
complete conversations, to validation
of content, received through a variety of
communication channels.

3.	 During execution and upon completion,
exchanged messages and validation
results are displayed and compiled
in a test report that is stored for
later reference.

Figure 2: Using the test bed

User
1

Test Case: 1 Test Case: 2 Test Case: 3

Test Bed

- Validate X - Validate Y - Validate Z

Test Case: 2
- Validate Y

Test Bed

Test Case: 2
- Validate Y

User

Reference
Implementation A

Reference
Implementation B

2

Test running

User
UserUser

Test Case: 2
- Validate Y

Test Bed

Report 1

Report 2

3

2.4	 Who is using it?

Testing for electronic invoice exchange using
the European Commission’s CEF e-Invoicing
DSI 3 is offered to its user community across
Member States to address invoice content
validation. Invoices can currently be provided
for automated validation by means of web form
upload, email and (GITB-compliant) web service
call. At the time of writing extensions are also
planned to include invoice delivery as AS2 4 and
AS4 5 messages using the CEF e-Delivery DSI.

2.4.1	 Who else can potentially use it?

Initiatives (public administrations, funded
projects etc.) with relevance to (cross-border)
interoperability can apply to have their reference
implementations and test suites installed in
the test bed run by ISA2, for their respective
communities to use. Software owners, including
privately held companies who build solutions as
part of a larger programme for which they would

need or want to undertake interoperability testing,
can then use the test bed to test their products’
connectivity against supported reference
implementations, or the conformance of their
messages against supported specifications. The
testing of software providers’ solutions through
the test bed results in benefiting the businesses
and citizens that will eventually use the envisioned
services, in that the interoperability of the building
blocks used to realise them is rigorously tested.

Anyone, including those not eligible to directly
use the ISA2 test bed service, is free to
download the test bed software and install
a local instance in their own premises. The
installation process for such a local instance
is detailed in Chapter 3, “Installing the GITB test
bed”. Additionally, Annex I, “Risk statement”,
informs about risk points related to use of the
GITB software.

https://joinup.ec.europa.eu/community/cef
https://www.ietf.org/rfc/rfc4130.txt
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/os/AS4-profile-v1.0-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/os/AS4-profile-v1.0-os.pdf

8  Why an Interoperability Test Bed?

2.5	 The GITB test bed software

6	� GITB TRR in Joinup: https://joinup.ec.europa.eu/catalogue/repository/gitb-trr
7	� The action’s Joinup page: https://joinup.ec.europa.eu/asset/itb/description
8	� ISA2 Action 2016.25: http://ec.europa.eu/isa/actions/

isa2/08-supporting-instruments-for-public-administrations/25action_en.htm

The GITB project represents a CEN
standardisation initiative funded by the
European Commission’s DG GROW to provide
the specifications for a generic interoperability
test bed and their implementation in the form
of the GITB test bed software.

The project’s purpose is not only to identify
what is needed to support testing but also to
make test bed elements modular and reusable.
This reusability extends the confines of a
single test bed, in that testing resources and

components can be remotely reused as long as
they follow the same specifications. This results
in the concept of GITB compliance, which
includes (among other types of specification
compliance) a set of standard web service
APIs for test beds, validation services and
simulators. These compliant web services are
furthermore federated in the Test Registry
and Repository (TRR) 6, implemented in the
European Commission’s Joinup platform, as a
single point of reference.

Figure 3: The GITB test bed software used in the ISA2 interoperability test bed service

In terms of architecture, the GITB test bed
serves as the intermediate between testers
and SUTs on one hand, and the reference
implementations or simulators that realise the
offered test services on the other. Reference

implementations can range from embedded
test bed components to separate application
instances that can either be locally hosted on
the test bed’s infrastructure or remotely on
external hosting facilities.

2.6	 Where to find the test bed and extra information?

For more information on ISA²’s test bed service
and its underlying software you are invited
to visit the test bed’s Joinup page 7. For more

general information on the ISA² Action 2016.25
that drives the work on making this service
available have a look on the Action’s web page 8.

SUT

Tester

Remote hosting facility

GITB-compliant
validator

GITB-compliant
test bed

GITB-compliant
simulator

Hosting facility

GITB test
registry and

repository (TRR)

Reference
implementation

1

Reference
implementation

2

Reference
implementation

N

GITB-compliant test bed

Test bed user
interface

Remote hosting facility

Reference
implementation

1

Reference
implementation

2

Reference
implementation

N

https://joinup.ec.europa.eu/catalogue/repository/gitb-trr
https://joinup.ec.europa.eu/asset/itb/description
http://ec.europa.eu/isa/actions/isa2/08-supporting-instruments-for-public-administrations/25action_en.htm
http://ec.europa.eu/isa/actions/isa2/08-supporting-instruments-for-public-administrations/25action_en.htm

Introduction to the ISA2 test bed  9

x Why install a test bed locally?

The current section details the installation process for the GITB test bed software, the software that is used
to power the ISA2 test bed service. You would be interested in installing the GITB test bed in your premises if:

•	 You are considering using the ISA2 test bed service but first want hands-on experience to determine
if it covers your needs.

•	 You want to run in your local premises a GITB test bed instance, either because you are not eligible or
do not want to use the ISA2 test bed service.

•	 You want to try hands-on the GITB test bed software to get a better understanding of what a test bed
can be used for. The package includes demo test cases to try out for that purpose.

9	� Docker: https://www.docker.com/

To facilitate the installation of a local test
bed instance, the GITB test bed’s components
have been made available as Docker 9
container images.

Docker is an open-source project that automates
the deployment of applications inside software
containers by providing an additional layer of
abstraction and automation of operating-
system-level virtualisation on Linux. Once
Docker is installed on the machine chosen to
host the test bed, the container images can be
deployed as-is without any concern on lower

level dependencies or necessary software
packages. While Docker targets Linux platforms
the test bed can also run in a lightweight Linux
virtual machine for Windows or Mac designed
specifically for Docker.

The installation process of the test bed is
simple and fast, with most time involved
relating to downloading each component.
Putting aside download time, the installation
can be completed in a matter of minutes.

Installing the GITB
test bed3

https://www.docker.com/

10  Installing the GITB test bed

x Note for production use

If you are installing the GITB test bed for production use you need to be aware of how it handles ports.
The test bed opens dynamically ports on its host machine for simulated test case actors, one set of ports
per test session. Exposing a large number of ports through Docker using its default configuration can be
time and memory consuming. To address this it is recommended to run Docker with hairpin NAT enabled,
rather than relying on a per-port userland proxy, by setting the following value in Docker’s configuration
file (located at e.g. /etc/default/docker for an Ubuntu distribution):

DOCKER_OPTS=”--userland-proxy=false”

If you are intending to run the GITB test bed for demo purposes then you can skip this configuration step.

3.2	 Step 2 – Install GITB test bed

10	� MySQL: https://www.mysql.com/
11	� Redis: http://redis.io/

The GITB test bed is composed of a series of
components, namely:

•	 A frontend server to provide the
user interface.

•	 A backend server to provide the
testing capabilities.

•	 A MySQL 10 relational database to record
users, test cases and reports.

•	 A Redis 11 cache server.

To install and start the test bed’s components
execute the following commands:

x Note for demo use

The instructions in this section guide you through the installation of the GITB test bed on your local
environment, resulting in a fully functional but empty test bed installation.

If your goal is to install the test bed primarily for demo purposes then it would be easier to refer to
Chapter 4.2.1, “Demo installation from scratch”, which results in an installation already configured to run
a set of simple demos.

3.1	 Step 1 – Install Docker

To install Docker on the machine chosen to
host the test bed, follow Docker’s “Get Started”
documentation at https://www.docker.com/. The

test bed has been validated for Docker version
1.10.1 as a minimum.

1	 docker network create gitb-net

2	 docker create -v /gitb-repository --name gitb-repo ubuntu

3	 docker �run --name gitb-mysql --net=gitb-net -e MYSQL_ROOT_PASSWORD=root -p
3306:3306 -d isaitb/gitb-mysql

4	 docker run --name gitb-redis --net=gitb-net -d redis:3.0.7

5	 docker �run --name gitb-srv --net=gitb-net -p 8080-8090:8080-8090 -e gitb.mes-
saging.server-ip-address=$HOSTNAME -d isaitb/gitb-srv

6	 docker �run --name gitb-ui --net=gitb-net -p 9000:9000 --volumes-from gitb-re-
po -d isaitb/gitb-ui

Note that in the commands above, the variable
$HOSTNAME should be set (or replaced in the

command itself) with the publicly accessible
host name of the machine hosting the test bed.

https://www.mysql.com/
http://redis.io/
https://www.docker.com/

Introduction to the ISA2 test bed  11

The following table explains the purpose of
each command and various configuration
options to be considered.

#  Description

1.	 Creates a “bridged network” to allow the individual containers to securely communicate. This is passed to the
appropriate containers using the “--net” flag.

2.	 Creates a storage volume to hold test suite files that are read by the GITB frontend.

3.	 Creates a pre-populated MySQL database listening on port 3306 with a root password of “root”. Both the port
mapping and the password can be changed without impact to the test bed. For example passing “-e MYSQL_
ROOT_PASSWORD=mypass -p 5506:3306” would set the password to “mypass” and expose the database on
port 5506.

4.	 Creates a Redis cache server instance used internally by the GITB frontend.

5.	 Creates the GITB test bed backend used to drive test execution. The “gitb.messaging.server-ip”
argument needs to be passed the host name of the server running the test bed (i.e. the Docker host).
This needs to be a host name that can be called by test clients (i.e. a public IP address if clients are
to connect over the internet) as it will be used automatically by the test bed for its simulated actors.
Regarding exposed ports, this command opens the ports within the 8080-8090 range which is more than adequate
for demo purposes. If the test bed is to be used for production purposes a significantly larger port range needs to
be foreseen considering that each parallel test session with simulated actors requires remotely accessible ports.
To allow for example 300 open ports (the currently configured maximum) provide “-p 8080-8380:8080-8380”.

6.	 Creates the GITB frontend that provides the test bed’s web user interface. The user interface can be accessed
at http://dockerhost:9000/, replacing “dockerhost” with the appropriate host name. Note that, as in the previous
commands, the port 9000 can be replaced if needed. For example passing “-p 80:9000” will expose the user
interface on the default port 80.

3.3	 Useful commands to manage your GITB test bed installation

3.3.1	 Shutdown the test bed

Shutting down the test bed basically requires
its Docker containers to be stopped. This is
achieved using the following command:

docker stop gitb-ui gitb-srv
gitb-redis gitb-mysql

Note here that the network (gitb-net)
and data volume (gitb-repo) initially
created during the installation do not need
to be shut down as they do not actively
consume resources.

3.3.2	 Restart the test bed

If not already the case, shut down the test
bed as described in Chapter 3.3.1, “Shutdown
the test bed”. Once stopped, issue the
following commands:

docker start gitb-mysql gitb-
redis

docker rm gitb-ui gitb-srv

docker �run --name gitb-
srv --net=gitb-net -p
8080-8090:8080-8090
 -e gitb.messag-
ing.server-ip-
address=$HOSTNAME -d
isaitb/gitb-srv

docker �run --name gitb-
ui --net=gitb-net -p
9000:9000 --volumes-
from gitb-repo -d
isaitb/gitb-ui

In the commands listed above, remember
to replace $HOSTNAME with the publicly
accessible host name of the machine hosting
the test bed.

http://dockerhost:9000/

12  Installing the GITB test bed

Note here that the database (gitb-
mysql) and cache server (gitb-redis)
are restarted using the “docker start”
command to maintain their previous state.
This is not the case of the GITB frontend and
backend components (gitb-ui and gitb-
srv) which are first removed and re-ran. The
“docker run” commands in this case
would be identical to the ones used during the
test bed’s initial installation. It is interesting
to highlight that the test bed’s frontend
and backend are fully stateless and can be
discarded without concern. This is especially
interesting in case updated container versions
are available.

3.3.3	 Monitor the test bed
components

Monitoring the test bed during its operation
is most effectively achieved by following
the desired component’s log trace. For
example, to monitor the logs of the test
bed’s service backend (gitb-srv) issue the
following command:

docker logs -f gitb-srv

In this example providing the “–f” flag will
result in following (tailing) the component’s
log output (rather than printing them once).

3.3.4	 Uninstall all test bed
components

The first Step in a full uninstallation would be
to stop all test bed components as described
in Chapter 3.3.1, “Shutdown the test bed”. The
second Step is the removal of all test bed
components, including the test bed network
and data volume. This is achieved using the
following commands:

docker rm gitb-ui gitb-srv
gitb-redis gitb-mysql gitb-
repo

docker network rm gitb-net

At this point the test bed can be quickly
re-installed by issuing the installation
commands as described in Chapter 3.2,
“Step 2 – Install GITB test bed”. Given however
that test bed’s database (gitb-mysql)
and data volume (gitb-repo) have been
removed, the test bed’s state (i.e. test cases,
reports, users, systems) will be reset. This result
could however be interesting in case you are
experimenting with the test bed and would like
to revert to a clean state.

Introduction to the ISA2 test bed  13

The current section introduces two
demonstration test cases to help understand
what can be achieved with the test bed. They
are selected as scenarios that are simple to
understand but also as a showcase of the
different capabilities the test bed has to offer.

12	� UBL: http://ubl.xml.org/
13	� OASIS: https://www.oasis-open.org/

The subsections that follow present each
demo test case and guide you through the
steps needed to set them up and run them on
a locally installed test bed instance.

4.1	 Demonstration test cases

4.1.1	 Validation of a UBL Invoice

The Universal Business Language 12 (UBL), from
OASIS 13, defines a library of standard electronic
XML business documents such as purchase
orders and invoices. The purpose of this test case
is to allow the validation of such an invoice’s
content that is provided to the test bed by a user
through a web form upload. Once uploaded, the
invoice is validated by the test bed:

•	 In terms of structure, using the UBL
XML Schema.

•	 In terms of content using Schematron rules
that implement the BII Core T10 Invoice
Transaction Structure and BII Rules T10
Invoice Business Rules.

To realise this test case the test bed first
prompts the user to provide the UBL invoice
and then proceeds with its validation. In this
case the test bed does not need to simulate
any additional systems as test case actors.

Demo summary

What is the demo about? Validation of a UBL XML invoice uploaded by a user through a web form.

Why is this interesting as
a demo?

✓✓ Shows how XML content can be validated for conformance to a specification.

✓✓ Shows how users can interact with a test bed to provide it input.

✓✓ Shows a test case including only validation, without additional simulated systems
by the test bed.

GITB test bed
demonstration4

http://ubl.xml.org/
https://www.oasis-open.org/

14  GITB test bed demonstration

4.1.2	 Monitoring a WMS message
exchange

The Web Map Service 14 (WMS) is a standard
protocol from the Open Geospatial Consortium 15
for serving georeferenced map images over a
simple HTTP interface. WMS 1.1.1 defines two
mandatory operations that any WMS server is
required to implement:

•	 Operation “GetCapabilities”, to enable a
client to discover what is supported by the
WMS server, notably the layers representing
the maps.

•	 Operation “GetMap”, to enable the retrieval
of specific map layers.

The purpose of this test case is to allow
clients of a WMS server to test that they
correctly query the server’s capabilities and
then, based on what is reported by the server
as supported, request a specific map layer.
This test case assumes that the system we
want to subject to testing is such a client that
would, as part of its production operations,

14	� WMS: http://www.opengeospatial.org/standards/wms
15	� OGC: http://www.opengeospatial.org/

need to query a WMS server. Exposing this
test case allows this system to be tested
for interoperability before production rollout
and without impacting an operational
WMS server.

To realise this test case an actual WMS
server instance is used as a reference
implementation of the WMS standard which
is proxied by the test bed to capture and
validate exchanged messages. Upon test
case initialisation the client system, the
SUT, is provided with the address to be used
to contact the WMS server. This address in
reality is not that of the WMS server itself
but of the test bed’s proxy that is initialised
for this test execution. Once this address
is configured in the SUT, it proceeds to call
successively the GetCapabilities and GetMap
operations, requesting a map layer that is
supported by the server. The role of the test
bed is to ensure that the map layer requested
through the GetMap call is included in the
capabilities reported by the server through its
response to the previous GetCapabilities call.

Demo summary

What is the demo about? Validation of the sequence and coherence of messages sent to a WMS server to
retrieve a map layer’s image.

Why is this interesting as
a demo?

✓✓ Shows how the test bed can be used to validate the coherence of a message
conversation, spread over multiple messages.

✓✓ Shows how a client system can be configured to connect as a SUT to the test bed.

✓✓ Shows how the test bed can proxy a real system, acting as a standard’s reference
implementation, to monitor and validate its communication with a SUT.

http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/

Introduction to the ISA2 test bed  15

4.2	 Installing the test cases

16	� GeoServer: http://geoserver.org/

4.2.1	 Demo installation from scratch

x This section details how the provided demos can be setup in an environment where the GITB test bed’s
components have not already been installed. The only prerequisite is the installation of Docker itself as
described in Chapter 3.1, “Step 1 – Install Docker”.

Alternatively, if you already have a GITB test bed installation and want to setup the demos please refer
to Chapter 4.2.2, “Demo installation on an already existing test bed”.

To simplify the setup process of the demos,
their required resources have been pre-
packaged as Docker container images. These
demo-specific images include:

•	 The WMS server instance described in
Chapter 4.1.2, “Monitoring a WMS message
exchange”.

•	 Prepopulated filesystem and database
images with the already loaded test cases.

To install and start the test bed’s components,
including the discussed demo resources,
execute the following commands:

docker network create gitb-net

docker create -v /gitb-repository --name gitb-repo isaitb/gitb-
repo-demo

docker �run --name gitb-mysql --net=gitb-net -e MYSQL_ROOT_
PASSWORD=root -p 3306:3306 -d isaitb/gitb-mysql-demo

docker run --name gitb-redis --net=gitb-net -d redis:3.0.7

docker �run --name gitb-srv --net=gitb-net -p 8080-8090:8080-
8090 -e gitb.messaging.server-ip-address=$HOSTNAME -d
isaitb/gitb-srv

docker �run --name gitb-ui --net=gitb-net -p 9000:9000 --volumes-
from gitb-repo -d isaitb/gitb-ui

docker run --name geoserver --net=gitb-net -p 10080:8080 -d win-
sent/geoserver:2.8

Note that, as in the case of the test bed’s
installation described in Chapter 3.2,
“Step 2 – Install GITB test bed”, the variable
$HOSTNAME should be set (or replaced in the
command itself) with the publicly accessible
host name of the machine hosting the test bed.

Details on the purpose and options of
the previous commands can be found in
Chapter 3.2, “Step 2 – Install GITB test bed”.
All commands are identical to those used to
setup an empty test bed instance with the
following exceptions:

•	 The second and third commands above, used
to setup the test bed’s file system repository
and database are based on adapted demo
images (isaitb/gitb-repo-demo
and isaitb/gitb-mysql-demo
respectively).

•	 The final command is used to install and
start an open source GeoServer 16 instance
as a WMS-compliant server for the purposes
of the demo described in Chapter 4.1.2,
“Monitoring a WMS message exchange”.

http://geoserver.org/

16  GITB test bed demonstration

4.2.2	 Demo installation on an already
existing test bed

x This section details how the provided demos can be setup in an already existing GITB test bed installation.

Alternatively, if you do not already have a GITB test bed installation and are looking for the simplest way
to setup the demos please refer to Chapter 4.2.1, “Demo installation from scratch”.

Step 1 – Install the WMS server

To enable the demo described in Chapter 4.1.2,
“Monitoring a WMS message exchange”, a
WMS server instance needs to be installed.
This represents the only additional software
component that needs to be setup before we
can start testing.

To install and start the WMS server instance
issue the following command:

docker run --name geo-
server --net=gitb-net -p
10080:8080 -d winsent/geo-
server:2.8

Step 2 – Add the demo test cases to
the test bed

This Step requires connection to the test bed’s
interface as an administrator in order to register
the demo test cases and make them available
to the test bed’s users. The sequence of actions
below would need to be repeated for each new
test case we are adding to the test bed, and in
the case of the demos, once for the UBL-based
demo described in Chapter 4.1.1, “Validation of
a UBL Invoice” and once for the WMS-based
demo described in Chapter 4.1.2, “Monitoring
a WMS message exchange”.

Introduction to the ISA2 test bed  17

Description

1 Log-in as a test bed administrator with the account “test@test.com” and password “test”.

2 Go to the “Admin” section at the top of the page, select “Domains” and create a domain.

Provide relevant short and full names depending on the test case that will be deployed; e.g.

“UBL” / “Universal Business Language”

or “WMS” / “Web Map Service”.

3 After saving the new domain select it from the table and create a specification.

Provide relevant short and full names; e.g.

“UBL 2.1” / “ISO/IEC 19845:2015 Universal Business Language Version 2.1”

or “WMS 1.1.1” / “WMS Version 1.1.1”.

4 After saving the new specification select it from the table, click “Deploy test suite” and upload the zip archive
containing the test suite and test case.

The zip archives for each demo test case are available on Joinup:

UBL: https://joinup.ec.europa.eu/svn/cen-ws-gitb/samples/UBL_invoice_validation.zip

WMS: https://joinup.ec.europa.eu/svn/cen-ws-gitb/samples/WMS.zip

Step 2 – Select the test cases to test
against

This Step reflects the actions that the test bed’s
users would perform to select the test cases

they wish to test their system against. As in the
previous step, the actions listed below would
need to be repeated for each test case you
want to test against.

https://joinup.ec.europa.eu/svn/cen-ws-gitb/samples/UBL_invoice_validation.zip
https://joinup.ec.europa.eu/svn/cen-ws-gitb/samples/WMS.zip

18  GITB test bed demonstration

Description

1 Log-in as a vendor administrator with the account “admin@test.com” and password “test”. If already logged in
from the previous Step you will need to first log-out.

2 Select the system that you want to test for by clicking on its name.

Now select “Conformance Statement” from the left menu and click “Create conformance statement”. In the next
two steps of the wizard choose the relevant domain and specification you want to test for; i.e.

“UBL” and “UBL 2.1”

or “WMS” and “WMS 1.1.1”.

3 In the third Step of the wizard you select the actor that you want to have your system test as. In the case of the
UBL demo there is only one, called “User”; for the WMS demo (shown below) choose “WMS_Client” – and complete
the statement creation sequence by clicking “Next” and “Finish”.

Introduction to the ISA2 test bed  19

4.3	 Running the test cases

4.3.1	 UBL Invoice validation

The series of steps below describe how to
execute the test case for UBL invoice validation
described in Chapter 4.1.1, “Validation of a UBL
Invoice”.

Step 1 – Test case selection

Description

1 Log-in with the SUT vendor administrator account “admin@test.com” and password “test”.

2 Select the test system “Test system”, and then “Conformance Statement” from the left menu. From the listed
conformance statements select the one corresponding to the “User” actor within the UBL specification.

3 In the “Endpoints” section you provide the configuration that the test bed expects from the SUT. For this simple
test case click on “client.id” and provide a value of “0” (any value will do). Note that once provided, the test bed
will remember this and not require it again.

4 The “Conformance Tests” section at the bottom of this screen lists the test cases in the selected test suite (only
one in this case). Select the conformance test named “UBL_invoice_validation_test_1”.

20  GITB test bed demonstration

Step 2 – Test case initiation

Description

1 Click “Next” on the system configuration screen; this acts as a confirmation that expected configuration from
the user is complete.

2 Click “Next” on the preliminary initialisation screen as there is nothing specific to initialise.

Step 3 – Test case execution

Description

1 Click “Start” to run the test. You will immediately be prompted to upload a UBL invoice for validation.

Sample UBL invoices, both valid and invalid that can be used to demonstrate the test bed’s reporting capabilities
are available in Joinup:

https://joinup.ec.europa.eu/svn/cen-ws-gitb/samples/UBL_invoices.zip

2

The test bed presents the validation results of the test case in a graphical way. Arrows indicate an exchanged
message or, in this case, the upload action. The cogs on the other hand show the validation steps performed by
the test bed. Steps coloured in green indicate success, whereas red indicates failures.

In all cases the document icons next to each Step can be clicked to inspect the full details of the validation.
Clicking for example a failed validation Step would list the overview report of the validation including reported
warnings and errors. The input sources, in this case the XML invoice and Schematron rule file, can also be inspected
clicking the “Open in editor” link.

Finally, clicking on a specific error message will result in displaying the offending section of the received UBL invoice.

https://joinup.ec.europa.eu/svn/cen-ws-gitb/samples/UBL_invoices.zip

Introduction to the ISA2 test bed  21

4.3.2	 WMS message exchange

The series of steps below describe how to
execute the test case for a client system of
a WMS server described in Chapter 4.1.2,
“Monitoring a WMS message exchange”.

Step 1 – Test case selection

Description

1 Log-in with the SUT vendor administrator account “admin@test.com” and password “test”.

2 Select the test system “Test system”, and then “Conformance Statement” from the left menu. From the listed
conformance statements select the one corresponding to the “User” actor within the UBL specification.

3 In the “Endpoints” section you provide the configuration that the test bed expects from the SUT which in this case
is the address it will connect from. This is used by the test bed to isolate this test session by ignoring messages
received from other addresses once the test session starts. In other words, once a test session is in progress,
the test bed will allow it to progress only after receiving messages from the address that has been configured
in this step.

For the “network.port” you may provide any port value (e.g. “80”) as this will not be used in this specific case. For
the “network.host” you need to provide the IP address your SUT is connecting from. If testing against a remote
test bed over the internet this would be your IP address as viewed by the remote test bed. In this case however,
assuming you will be connecting locally using the provided SoapUI project (see subsequent steps), you need to
provide your local IP address as expected by the host running the test bed1.

4 The “Conformance Tests” section at the bottom of this screen lists the test cases in the selected test suite (only
one in this case). Select the conformance test named “WMS_test_1”.

22  GITB test bed demonstration

Step 2 – Test case initiation

Description

1 For the purposes of the demo we need a simple approach to provide the SUT that would call the WMS server. A
SoapUI2 project is available for this that is configured to make in sequence all expected calls to the WMS server.
This SoapUI project is available to download from Joinup:

https://joinup.ec.europa.eu/svn/cen-ws-gitb/samples/WMS-soapui-project-1.0.xml

2 Click “Next” on the system configuration screen in the test bed; this acts as a confirmation that expected
configuration from the user is complete.

3

The following screen, regarding preliminary initialisation, gives the address and port for the WMS server, where
the client needs to send its messages. In other words, this is the configuration that is reported to the user by the
test bed that the user is expected to configure in his SUT. It is worth noting that these configuration values are
distinct for each test session; if a parallel testing session is to be launched the test bed will assign a distinct port
to ensure test executions are isolated.

To configure these values in our SoapUI project, select within SoapUI the “WMS test case 1.0” project, select
the tab “Custom properties”, and provide as the value of the “base_url” property the address in the form of
http://network.host:network.port/.

Once your SoapUI project is configured you can, in the test bed, proceed to start the test case by clicking “Next”.

http://network.host:network.port/
https://joinup.ec.europa.eu/svn/cen-ws-gitb/samples/WMS-soapui-project-1.0.xml
http://network.host:network.port/

Introduction to the ISA2 test bed  23

Description

1 Click “Start” to have the test bed begin the test case’s execution. Once started the test bed will expect the initial
“GetCapabilities” request from the WMS client. This is reflected by the arrow coloured in blue that indicates an
expected but not yet received message.

To send this request switch to SoapUI and trigger the “Get a tile” test suite. This will send the initial “GetCapabilities”
request, extract a supported layer from the server’s response and use it in the subsequent “GetMap” request.

The result we expect to see in the test bed is an indication of all message exchange and validation steps having
completed successfully. As in the case of the UBL invoice validation demo, all document icons can be clicked to
inspect the details of the validation steps and the complete information received by the client and responded
by the server.

Step 3 – Test case execution

Introduction to the ISA2 test bed  24

The following two tables list acronyms
mentioned in the document text and
definitions of terms used.

Table 5-1 Acronyms

Acronym Definition
API Application Program Interface

CEF Connecting Europe Facility

CEN European Committee for Standardisation

DSI Digital Service Infrastructure

EIF European Interoperability Framework

GITB Global e-Business Interoperability Test Bed

HTTP Hypertext Transfer Protocol

IP Internet Protocol

ISA Interoperability Solutions for public Administrations

NAT Network Address Translation

OGC Open Geospatial Consortium

SUT System Under Test

TRR Test Registry and Repository

UBL Universal Business Language

WMS Web Map Service

XML Extensible Markup Language

Glossary5

25  Glossary

Table 5-2 Definitions

Term Definition
Reference
implementation

Application component that serves the purpose of realising a service that is made available
to SUTs to perform interoperability tests against. It is termed a “reference implementation” in
that it typically provides an implementation of a specification that is assumed to be correct so
that other implementations of the same specification (or just other instances of the reference
software) can test against. Note that in case no standard or specification is involved, the
reference implementation is effectively a simulator of the service that is exposed for testing.

Reference implementations can range from being fully independent IT systems to
plug-in components.

System under test System whose owners want to perform interoperability testing upon by connecting and running
test scenarios against services available to test against.

Test assertion Artefact that defines a statement to capture the goals of a testing activity and its prescription
level, making the link between the normative source of the assertion (e.g. a legislation article)
and the test details elaborated in test cases.

An example of a test assertion would be “The system needs to respond with a receipt to a
valid request within one minute”.

Test case Artefact that defines in detail the message exchange, processing and validation steps to be
performed in realising a test assertion. A test case realises an assertion possibly as a part
of a set of related test cases and can potentially be reusable between multiple assertions.

A possible test case definition for the assertion “The system needs to respond with a receipt to
a valid request within one minute” would include the steps to generate a valid request, send
it to the system in question, receive its receipt, validate it and check the time it was received.

Test suite Collection of test assertions forming a cohesive set. In the same way test assertions group a
number of related test cases, test suites group assertions into a cohesive set.

As an example consider a test suite that groups all the assertions needed to test a system’s
conformance against a specific standard (e.g. AS4).

Introduction to the ISA2 test bed  26

Annex I. Risk statement

17	� The GITB test bed software is available on GitHub: https://github.com/srdc/gitb
18	� ISA2 ITB Docker Hub repository: https://hub.docker.com/r/isaitb/

The current annex lists risk points related to use
of the GITB software. It is important to point out
that these points are relevant when considering
a local installation of the GITB software, not
when using the ISA2 test bed service. The goal
is to provide maximum clarity on such matters
to parties that would potentially host the GITB
test bed.

Use of Docker

The GITB test bed software is comprised of
multiple components that need to be built from
source 17, with additional components, namely
its database and cache server, which require
separate installation. These components need
to be subsequently configured appropriately
so that they operate as a cohesive whole.
Although by no means an overly complex
task, this requires that interested parties have
sufficient development skills and invest time in
understanding the details of each component.

To streamline the installation process of the
GITB test bed, both for demo purposes and
also for the management of ISA2’s own test
bed service, the Docker tool was selected as
an approach to greatly simplify installation
and operation by packaging the test bed’s
components in lightweight and modular
containers. Although software delivery using
Docker is quickly becoming an Industry best
practice, it is not a standard and the choice
to make use of it for the GITB test bed adds
a dependency to third party software. This
dependency manifests in the definition of the
Docker containers themselves and also in the
fact that their installation involves them being
fetched from the “isaitb” account on the central
Docker Hub 18.

If the Docker software is discontinued or use of
its services is restricted due to future licensing
constraints or costs, an alternate approach to
ship and operate the GITB test bed software
will be made available.

GITB test bed software licensing

As mentioned in Chapter 2.5, “The GITB test
bed software”, the GITB test bed software
has been produced as part of the CEN GITB
Workshop Agreement, using funding from the
European Commission (DG GROW). The initial
requirements assumed that all software
produced would be open source and free of
licencing constraints. Moreover the produced
software’s source is currently available for
download from GitHub. However, considering
that this is the result of a CEN standardisation
process, it remains possible that CEN requires
a fee for its use. Discussions on the software’s
licencing are still, at the time of writing, pending
and explain why the source code on GitHub is
not accompanied by a clear licence statement.

This lack of licencing clarity is not considered
a problem for the ISA2 test bed service but
needs to be made aware to potential third
parties envisioning direct use of the software
itself. As this is a pending process the reader is
requested to contact ISA2 at isa@ec.europa.eu
in case information on the latest developments
is required.

Annexes6

https://github.com/srdc/gitb
https://hub.docker.com/r/isaitb/
mailto:isa@ec.europa.eu

27  Annexes

Annex II. Troubleshooting common GITB test bed issues

The current annex lists solutions to common
problems that could be encountered by
parties hosting an instance of the GITB test
bed software. Highlighting these is important
especially considering that parties running
the test bed for demo purposes will lack the
experience and time to investigate encountered
issues in depth.

Accessing the test bed’s user interface
results in a blank page

When accessing the user interface of the
GITB test bed it could be the case that
the user encounters a blank page. This is
typically due to experimentation with the
test bed’s components and specifically with
a reinstallation of its cache server (Docker
container gitb-redis). One of the uses
for the cache server is to store HTTP session
identifiers that are maintained in a client’s
web browser as a cookie. Experiencing a blank
page is due to an existing cookie providing a
session identifier that cannot be matched in
the cache server because the latter has been
removed and reinstalled. To address this the
user should clear his locally stored cookies
and reconnect to the test bed. Note however
that under normal operations this issue should
never be encountered.

The test bed does not receive
messages sent by a SUT as part of an
open test session

Test cases that require message exchange
with a SUT expect the SUT’s address to be
provided by the user as configuration before
a test session is started. This is reflected as
an “Endpoint” configuration property named
“network.host”. The value provided for this
needs to be the address of the SUT as received
by the test bed and is used by the test bed

to ensure that only messages received from
the configured address are considered for a
specific test session. If the wrong value is
configured the experienced result will be that
communication initiated by the SUT does not
get responded to and eventually times out,
with the relevant test session in the test bed
remaining stuck expecting a message.

If accessing the test bed over the internet,
finding the correct IP address to configure is
simple and can be provided by a multitude of
free services (even Google searching “what is
my IP”). It is more challenging to determine the
correct address to use if you are accessing the
test bed locally, especially if the Docker host
used to run the test bed is running on a virtual
machine (as is currently the case on Windows
or Mac machines).

The simplest way to determine the correct
address to use is to inspect the test bed’s log.
As a first Step attempt a communication from
your SUT and, assuming this has no effect,
provide the following command:

docker logs gitb-srv

This command will print the tail of the test
bed’s log file and will include in this case an
entry matching the following:

... TCPMessagingServerWork-
er - Received [192.168.99.1]
but expected [192.168.1.1]

This message indicates that you have
configured value “192.168.1.1” as the
“network.host”, whereas the communication
received matched the address “192.168.99.1”.
To correct this, stop the test case execution
and configure the expected value for the
“network.host” property (in this case using
value “192.168.99.1”).

HOW TO OBTAIN EU PUBLICATIONS

Free publications:
•	 one copy:

via EU Bookshop (http://bookshop.europa.eu);
•	 more than one copy or posters/maps:

from the European Union’s representations (http://ec.europa.eu/represent_en.htm);
from the delegations in non-EU countries (http://eeas.europa.eu/delegations/index_en.htm);
by contacting the Europe Direct service (http://europa.eu/europedirect/index_en.htm) or
calling 00 800 6 7 8 9 10 11 (freephone number from anywhere in the EU) (*).

(*)	The information given is free, as are most calls (though some operators, phone boxes or hotels
may charge you).

Priced publications:
•	 via EU Bookshop (http://bookshop.europa.eu).

http://bookshop.europa.eu
http://ec.europa.eu/represent_en.htm
http://eeas.europa.eu/delegations/index_en.htm
http://europa.eu/europedirect/index_en.htm
http://bookshop.europa.eu

N
O

-05-16-009-EN
-N

	_Ref449955842
	_Ref449955846
	_Ref449955440
	_Ref449955445
	_Ref449955561
	_Ref449955565
	_Ref449955582
	_Ref449955586
	_Ref449955376
	_Ref448139289
	_Ref449955625
	_Ref448744999
	_Ref412817551
	_Ref414020582
	_Ref448745001
	Introduction
	1.1	What is the purpose of this document?
	1.2	Who is this document meant for?

	Why an Interoperability Test Bed?
	2.1	The business need
	2.2	The ISA² test bed service
	2.3	How do I use the test bed?
	2.4	Who is using it?
	2.5	The GITB test bed software
	2.6	Where to find the test bed and extra information?

	Installing the GITB test bed
	3.1	Step 1 – Install Docker
	3.2	Step 2 – Install GITB test bed
	3.3	Useful commands to manage your GITB test bed installation

	GITB test bed demonstration
	4.1	Demonstration test cases
	4.2	Installing the test cases
	4.3	Running the test cases

	Glossary
	Annexes
	Annex I. Risk statement
	Annex II. Troubleshooting common GITB test bed issues

