

# Technology Production vs. Technology Diffusion

## **Georg Licht**

Centre for European Economic Research (ZEW)

Mannheim, Germany



## Lisbon Agenda & Technology Diffusion

"not the creation of technological leadership in itself that affords a nation its competitive advantage, but the rate and level of diffusion of the technology into economic use"

Rothwell/Zegfeld 1985



## **Examples:**

## Location of invention & profit from invention

#### Fax

- First technical realisation by Bell 1921
- Several configuration ("innovation") introduced in US & Germany (failed)
- Telex technology more advanced ("dominating technology")
- Massive investment by Japanese Firms to improve the technology ("picture based content")
- Early adoption permanent advantage of early adopters (5 year lead)

#### Mobil phone

- Basic principle developed by Bell 1940; addition coinventions need
- Analog mobil phone (AMPS Standard) in mid 1970ies by ATT
- First market introduction in Japan late 1970ies
- Standardisation activities in EU (GSM) in 80; leading UK, DE, F
- E.g. Market introduction in Germany fail ("niche market")
- Rapid diffusion start, however, in Finland/Sweden early nineties
- Wind energy (GroWiAn vs. Denmark, .. GE R&D in DE), Solar energy (early production facilities vs. mass production



#### **Perfect Diffusion**

- Benchmark case
- Perfect flow of technological information: Location of production of knowledge and technology use independent
- But perfect diffusion is rare
  - Costly adoption / absorptive capacity / complementary assets
  - Technology production is not a one-shot game (competition of laggards force addition innovation; selection of dominant design and dynamic externalities)
  - Protection of inventors as incentive to invent
  - Nature of knowledge (tacit, localised spillovers)



## **Diffusion & Creation Interaction**



Role of competition, non-innovation policies like health care pricing etc.



## Factors Facilitating Lead Markets

- Early Demand (infrastructure, complementary assets)
- Price / Cost / Market structure (Competition)
- Local advantage export cumulative advantages (Producer – User – Interaction)
- Transfering innovation to new / different applications (Adoption risk; absorptive capacity, ..)



## Internal capabilities

External capabilities

Strategic capabilities



## **Internal Capabilities**

#### Manage tangible technology base

- Product development assistance
- R&D tax breaks
- State-subsidised R&D programmes
- Manufacturing consultancy

#### Develop and manage appropriate intangible resources

- Quality programmes
- Placements of qualified personnel, eg engineering graduates
- Loans of research personnel
- Training needs analysis and training programmes

#### **Create needed organisation**

Technology management courses



## Access external knowledge (Networking)

#### Access to external knowledge ("technological infrastructure")

- "Innovation vouchers" etc.
- Science parks & Technology centres & applied PROs
- Technology development networks & Technology transfer programmes
- University liaison officers & faculty industrial placements
- Subsidy to university/industry links
- Technology information services

#### Manage producer/user relations

Procurement programmes

#### Access partners with needed complementary assets

- Partner-search programmes
- Inter-company network programmes



## Strategic Capabilities

- Business capability development, especially marketing
- Business and technology audits; mentoring
- Awareness programmes, including visits and comparisons
- Feasibility assessments
- Financing / Smart money (early stages of diffusion)



### **Diffusion Policies**

- All countries support technology diffusion
- Wide variety of measures
  - Enhancing absorptive capacities (esp. In SMEs)
  - Provision of information (awareness, demonstration centres, technological information centres, consultancy services, technological assistance)
  - Training programmes
  - Financial support (e.g. loans for investment in new machinery)
  - Collaborative research involving early adopters



## Growth of government spendings on R&D 2000-2005 by type of spending



<sup>\*</sup> Not data available for block grants to university & non-university research Budget costs of tax credits not included here



## R&D spending by type of R&D 2004 (%)

|                | Country/Region | Basic research | Applied research | Development |
|----------------|----------------|----------------|------------------|-------------|
| TOTAL          | OECD19         | 18,2           | 23,6             | 57,0        |
| Universities   | OECD19         | 74,8           | 21,7             | 3,5         |
| RPO            | OECD19         | 28,4           | 34,7             | 36,3        |
| Private sector | OECD19         | 5,3            | 21,2             | 73,5        |
| Private sector | OECD23         | 5,2            | 25,0             | 69,8        |
|                | GER            | 4,5            | 51,8             | 43,8        |
|                | USA            | 4,2            | 18,7             | 77,1        |
|                | JPN            | 6,0            | 19,3             | 74,5        |
|                | GBR            | 14,1           | 25,5             | 60,3        |
|                | FRA            | 5,0            | 41,2             | 53,7        |
|                | IΤΑ            | 4,6            | 50,9             | 44,5        |

US does not contain block grants to university & non-university research Budget costs of tax credits not included



## Does EU lags in Technology Diffusion?

- Not in general
- Sectors/Technologies where diffusion is less wide spread or slower
  - -IT
- Sectors/Technologies with faster diffusion and larger rates of adoption
  - Mobile phones



## **Topics**

- Reviewing the elements of the lead markets initiative: Regulatory/legal framework, ..., Competition, Diversity
- Investment in complementary assets for diffusion and adoption (e.g. education, complementary products)
- Absorptive capacities (of SMEs; "R&D in SMEs") & technological infrastructure (diffusion oriented infrastructure)
- Role of young firms as early users/producers
- (Linking technical & social change: Technology awareness / resistance)



### Areas for consideration

- Absorptive capacities of SMEs ("R&D in SMEs")
- Organisational change
- Investment in complementary assets (for diffusion) (e.g. education)
- Technology awareness / resistance?
- International diffusion of new technologies / knowledge via FDI/R&D centres of foreign MNEs
- Role of intellectual property rights / spillovers
- Demand side ("Lead markets")